
DOCUMENT RESUME

ED 305 926 IR 013 795

AUTHOR Schwartz, Steven; And Oners
TITLE Empirical Studies of a "Metacourse" To Enhance the

Learning of BASIC.
INSTITUTION Educational Technology Center, Cambridge, MA.
SPONS AGENCY Office of Educational Research and Improvement (ED),

Washington, DC.
REPORT NO ETC-TR-88-13
PUB DATE Apr 88
CONTRACT 400-83-0041
NOTE 72p.

PUB TYPE Reports Research/Technical (143) --
Tests /Evaluation Instruments (160)

EDRS PRICE MF01/PC03 Plus Postage.
DESCRIPTORS Classroom Observation Techniques; *Cognitive

Processes; Cognitive Tests; High Schools;
*Metacognition; Microcomputers; *Problem Solving;
*Programing; *Transfer of Training

IDENTIFIERS BASIC Programing Language

ABSTRACT

This report introduces the concept of a
"metacourse"--i.e., the provision of mental models, problem solving
strategies, key concepts, and other structures--to assist students in
learning programming, and examines the effect of the use of such a
metacourse on high school programming students. The experimental
group consisted of 6 teachers who taught BASIC programming to 132
students at 5 high school laboratory sites, and the control group
consisted of 9 teachers who taught 239 Ftudents at 8 control sites.
The metacourse consisted of a series of eight instructional lessons
interspersed throughout the semester. Students were given both
pretests and posttests in cognitive skills, and observations of the
experimental sites were also made. After examining these data, a
second revised metacourse was developed and used with nine other
teachers in seven new sites under conditions that more normally
duplicate normal classroom innovations. The results showed that both
the laboratory site and classroom site students who were exposed to
the metacourse experienced significant improvement in their mastery
of the BASIC programming language. However, the modest evidence of
"transfer" skills found in the laboratory site was not evident in the
second study under more normal classroom conditions. This suggests
that transfer from programming is not normally obtained unless
special efforts are made to explicitly design such elements into the
intervention. Appended materials include the cognitive
pretest/posttest, a test on BASIC, and a classroom observation
worksheet. (34 references) (EW)

Reproductions supplied by EDRS are the best that can be made

from the original document.

TR88-13

4

U S DEPARTMENT OF EDUCATION
Oftfce I Educalonal Research and irnprov.ment
EDUCATIONAL RESOURCES INFORMATION

CE' -ER ,ERICI
VTh.s document has been reproduced as
received Iron, the person or Orgenizatonoriginating .r

Wm), changes have bean made to improve
reproduction Quality

Points ot view or OpmOns Staled ,n this dOcu
rnent do not neceSSanly represent offiC,a/
OERi position or pOICv

EMPIRICAL STUDIES OF A "METACOURSE"

TO ENHANCE THE LEARNING OF BASIC

Technical Report

April 1988

FAhleatioanl Techiselogy Ceolter

Harvard Graduate School of Education
337 Gutman Librar Appian WaN Cambridge MA 02138

(617) 495-9373

4 BEST COPY AVAILABLE

Empirical Studies of a "Metacourse"
to Enhance the Learning of BASIC

Steven Schwartz
D.N. Perkins
Greg Estey

John Kruidenier
Rebecca Simmons

Suman Bhattacharjea
David Niguidula
Julie Taminiau

Shelagh Turner

Preparation of this report was supported in part by the Office of Educational Research and
Improvement (Contract # OERI 400-83-0041). Opinions expressed herein are not necessarily

shared by OERI and do not represent Office policy.
(To be submitted to the Journal of Educational Computing Research)

ACKNOWLEDGEMENTS

The "Metacourse" discussed here is the product of the Programming Group at the Educational
Technology Center, all the members of which are thanked for their many contributions. Ellen
Mandinach of the Educational Testing Service suggested certain test items for the cognitive skills
test. We would especially like to thank Bill Bower, Julie Hochstadt, Kathy Hollowell, Patricia Jones,
Kathy Moore, Nancy Samaria, and Paul Shapiro for their contributions both in and out of their
classrooms in the development and assessment of the Metacourse materials.

TABLE OF CONTENTS

t

Introduction 2

Stuaents' Learning Problems in Mastering Programming 2

Fragile Knowledge 3

Elementary Problem-Solving Strategies 3
Confidence and Control 3

The Notion of a Metacourse 4
Study 1 5

Method 5

Setting rJ
Subjects 5
Procedures 6

Teaching Intervention 6
The "paper computer: A visual model of the computer 6
Purpose-syntax-action: A frame for program constituents 7
Patterns: thinking beyond individual commands 8
Writing a program: Planning, coding, checking, and debugging 8

Assessment Procedures 9
Cognitive skills pretest-posttest 9
BASIC test 10

Classroom Observations 11

Student Ouestionaire 12
Homework 12
Coding Procedures 12

Cognitive pretest-posttest 12
BASIC test 13
Scoring procedure 13

Results 14
Fidelity to Metacourse Lessons as Written 14
Homework 14
Differences between Metacourse and Ordinary Lessons 15
Group Differences 16

Previous Experience with Computers and Computer Prcgramming 16
Cognitive Pre-test 16

Impact of Instruction on Mastery of BASIC 17
Transfer 21

Impact on General Cognitive Skills 22
Teachers' Reactions to the Metacourse 22
Year End Follow-up 23

Discussion 23
Teaching 26
Transfer 26
Impact on Programming Mastery 26

Study 2 27
Method 27
Results 33
Discussion 33

Future Directions 34
References 36
Appendices

Empirical Studies of a "Metacourse" to
Enhance the Learning of BASIC

Introduction

Enhancing instruction in an existing subject matter on a wide scale is a conspicuous and
rarely met challenge of contemporary education, and for understandable reasons. On the one
hand, the subject matters bring with them a number of conceptual challenges and problems of
metacognitive control that require careful study to disclose End careful instructional design to

remedy. On the other hand, however artfully fashioned better instruction may be, wide-scale
implementation must run the gauntlet of a number of impeding factors teacher training, cost of
materials, institutional inertia, and so on.

A desirable program of research would address not only the leaming of a subject matter but
also the practical problems of implementation as part of a unified program of inquiry. During the
past several years, we have tried to conduct such an investigation into the pedagogy of

programming. Through clinical studies and teaching experiments, we have sought to understand
better the factors that interfere with beginners' mastery of programming in BASIC and LOGO and

to devise instructional methods that enhance their learning (see e.g. Perkins, Farady, Hancock,
Hobbs, Simmons, Tuck, & Villa, 1986; Perkins, Hancock, Hobbs, Martin, & Simmons, 1986;
Perkins, Hancock, Hobbs, Martin, & Simmons, 1986; Perkins, Martin, & Farady, 1986). Regarding
implementation, we have tried to couch our instructional methods in a format called a
"metacourse," designed from the first to address some of the daunting problems of wide-scale

disseminability (Perkins, Farady, Simmons, &Villa; Perkins, Schwartz, & Simmons, in press).

This paper describes a large-scale experiment examining the effectiveness of the
metacourse we have developed in entrancing high school students' learning of BASIC. The
positive results can be taken as support for the general analysis of the difficulties of programming
developed in our earlier work, and for the viability of our approach to educational change. Before
detailing the experimental method and results, we describe briefly the context established by our
prior work.

Students' Learning Problems in Mastering Programming

It is plain that computer programming poses special challenges. Like mathematics and

physics, programming is a precision-intensive subject matter, requiring meticulous care with
details. Programming is also problem-solving intensive, student activities focusing almost entirely
on resolving programming problems. While today this is typical of mathematics, physics, and
certain other science subjects, we note that anx school subject can and perhaps should be
treated in a problem-solving intensive way. Finally, programming is not just problem-solving
intensive but "design intensive." That is, students have to construct whole complex products that

Mil

2 Programming

do certain jobs, not just derive particular answers like 35 cm/sec or A.17. In today's schools,
complex products appear mostly in art (the works themselves), Euclidean geometry (proofs), and
English and Social Studies (essays). Again, we note that any school subject can and perhaps
should emphasize the construction of complex products.

It is hardly surprising that a precision-intensive, problem-solving intensive, and design-
intensive subject matter should give many students considerable difficulty. In recent years,
evidence has accumulated that a high percentage of students in elementary and high school
achieve only extremely limited mastery of programming even after a semester or two of instruction
(see e.g. Mawby, 1987; Pea, 1986; Pea & Kurland, 1984a; Pea & Kurland, 1984b; Kurland, Pea,
Clement, & Mawby, 1986; Kurland, Clement, Mawby, & Pea, 1987: EJnar & Soloway. 1985;
Soloway & Ehrlich, 1984; Sleeman, Putnam, Baxter, & Kuspa, 1986). In seeking to summarize
and synthesize our own and others' findings in this area, we have found it useful to characterize
students' difficulties under three broad headings: fragile knowledge, a shortfall in elementary
problem solving strategies, and problems of confidence and control.

Fragile Knowledge

"Fragile knowledge" refers to the fact that students commonly displaypartial knowledge,
considerable inert knowledge (not evoked in contexts of need but retrievable with cueing), and
garbled knowledge (concepts used in the wrong place, in inappropriate hybrids) of programming.
Perkins, Hancock, Hobbs, Martin, and Simmons (1986) discuss fragile programming knowledge in
detail, emphasizing the importance of distinguishing between fragile and missing knowledge:
Students typically have much more knowledge than they use well. If students could somehow
activate their inert knowledge and perform internal cross-checks of garbled knowledge, they
might perform substantially better.

Elementary Problem-Solving Strategies

By asking themselves elementary "problem management" questions like "What am I trying to
do now," "do I know a command that could help," "exactly what does the line of code I just wrote
do if I hand execute it," and so on, students might make better use of their fragile knowledge
base. Clinical experiments reported in Perkins, Hancock, Hobbs, Martin, and Simmons (1986)
and Perkins, Martin, and Farady (1986) suggest that this is so. Unfortunately, students do not
appear to probe with such questions as often as they might, a shortfall in elementary problem-
solving strategies.

Confidence and Control

Finally, students often evince motivational problems that interfere with their controlling well
their own problem-solving processes. For example, many students simply disengage from
programming problems and commence a side activity or seek help as soon as the least difficulties
emerge. These "stoppers" as we have called them are often quite capable of continuing on non-
directive prompting, but do not seem to recognize their own abilities (Perkins, Hancock, Hobbs,
Martin, & Simmons, 1986).

Programming 3

One way or another, efforts to enhance instruction in programming should address the triple
problem of fragile knowledge, strategic shortfall, and confidence. Note that these difficulties as
described here do not force wholesale reconsideration of what is taught in elementary
programming instruction. After all, the key commands, the fundamental operating procedures,
and so on, surely need to be taught. Instead, the shoat, 'lc identified could be taken to invite
some sort of "booster shot" -- some treatment to enhance he learning set and strategic repertoire
students bring to the enterprise of programming.

The Notion of a Metacourse

With this point in mind, we introduce the notion of a "metacourse." The goal of a metacourse
is to provide mental models, problem-solving strategies, key concepts, and other structures that
may help students to understand more deeply and wield more artfully the knowledge they are
acquiring during their regular instruction in a subject matter. In particular, the Metacourse in
Programming discussed here offers students a mental model of the computer and how it works at
a level appropriate for understanding BASIC and its operation, a strategy for understanding new

commands and relating them to the mental model of the computer, several strategies for breaking
programming problems down into subproblems of various sorts, and other concepts and tactics
designed to help students deal with the difficulties identified earlier (Perkins, Schwartz, &
Simmons, in press).

The metacourse is not a course a complete remaking of the usual instruction. Rather it
functions in a "meta" way, infusing a few important and often neglected conceptual elements into

"business as usual." Thus, the Programming Metacourse is organized to allow the teacher to
introduce key concepts periodically as the term advances and students gain a knowledge base in
BASIC. This infusion process, together with the metacognitive emphasis, are the factors that
distinguish metacourse design from conventional curriculum redesign.

Why might a metacourse offer an approach to enhancing instruction that evades some of the
implementation difficulties outlined earlier? In comparison with a new course altogether, a
metacourse is much more compact and its materials much less expensive. A metacourse does
not displace, but merges smoothly with, existing materials and instructional practices.
Accordingly, we suggest that a metacourse lends itself to wide-scale dissemination easily more
than most efforts at curriculum reform.

The results of a preliminary study reported in Perkins,Farady, Simmons and Villa (1986)

indicated that the Metacourse was eminently teachable, with no major problems of teacher
preparation. While there was some)uraging evidence that the Metacourse was having its
intended effect, the data from this formative study were far from conclusive.

In the follow1ng pages, we report on two studies involving a number of treatment and control

classroom which attempt to provide further evidence on the effectiveness of the Metacourse in
settings where emphasis is placed on infusing the key concepts into the teacher's presentations
throughout the entire course.

4 Programming

STUDY 1

Method

Setting

The Programming Group's first large-scale study of the Metacourse was conducted within the
context of another Educational Technology Center study, the "Laboratory Sites" project. This
broader study, described in detail in another report, aimed to involve the teachers using the
Metacourse (as well as intmentions in two other subject matter areas) in the discussion and
evaluation of the educational innovations they were implementing in their classrooms.

Participation in the Laboratory Sites project meant that the teachers using the Metacourse
received more support in their efforts to adapt the new materials to their own styles and
classrooms than would normally be the case. The main extra supports were: monthly meetings
with the research team to discuss issues pertaining to the implementation of the Metacourse;
frequeni contact with a research assistant or the Laboratory Sites project liaison assigned to the
Programming Group; access to all Educational Technology Center personnel, as welt as each
other, via a personal computer comniunications network, and a small stipend in compensation for
their participation in collaborative research.

Although not all of these supports may have been significant for all of the teachers in the
experimental group, taken together they constitute an enriched support environment not
normally present, and not present in our control sites. The control site teachers, however, were
riot faced with the problem of introducing and infusing new, innovative materials into their well
practiced normal BASIC -urriculum.

From the standpoint of the research, the participation of the Programming Group in the

Laboratory Sites project created opportunities for very precise and timely feedback from teachers
about the effectiveness of the different lessons in the Metacourse. This feedback, which would
not otherwise have been available proved to be extremely valuable in guiding further revisions to
the Metacourse.

Subjects

The experimental group consisted of 6 teachers of BASIC, who taught 9 classes and 132
students at 5 high school laboratory sites. The control group pool consisted of 9 teachers who
taught 13 classes and 239 students at 8 control sites. The large control group was used so that
the groups could be matched if necessary on the basis of the general cognitive pre-test if overall
pre-test scores indicated that one group or the other was significantly more able. The difficulties
in data analysis encountered in the pilot study, in which the control group proved much more able
on the general cognitive measures, might thus be avoided.

All teachers were experienced programming instructors, beginning the semester with at least
2 years of previous experience teaching BASIC classes. All of the classes were straightforward

programming classes, meeting on average 5 times a week for forty-minute periods throughout
one semester.

i ()

Programming 5

Procedures

Teaching inteasn=

All of the experimental group instructors met with rho Programming Group staff and research
assistants early in the semester in order to go over the Metacourse materials and procedures.
Each teacher was introduced to a particular research assistant who would observe two
Metacourse lessons and one non-Metacourse lesson.

As described in the introduction, the Metacourse is a series of instructional lessons
designed to enhance and supplement the material typically covered in a first-semester BASIC
course. One major concern is to provide students with a clear mental model of the computer in
the BASIC environment and to help students internalize and employ the model when appropriate.
Another goal of the Metacourse is to provide students with programming-specific skills and a
conceptual framework that guide the student in initial understanding and subsequent application
of material learned in class.

The eight lessons are designed to be interspersed throughout the semester. Preliminary
lessons provide students with a visual model of the computer and equip students with the
conceptual framework for understanding commands, a framework that involves thinking of a
statement in terms of its purpose, syntax, and action (semantics). Later lessons deal with
strategies for writing good programs including breaking programs down into manageable chunks,

thinking of code in terms of functional units called "pattems", and regular use of checking and
debugging strategies. The components of the Metacourse are described in more detail below.

The "paper compute': A visual model of the computer. The concept of a mental model is

key in the design of the Metacourse. Recent work in the field of cognition underscores the
importance of helping students construct robust models in various domains (cf. Beveridge &
Parkins, 1987; Gentner & Stevens, 1983; Johnson- Laird, 1983; Mayer, 1976, 1981). Further,
empirical work in the pedagogy of computer programming suggests that a stronger mental model
of the computer can result in increased programming performance (DuBoulay, 1986; DuBoulay,
O'Shea, & Monk, 1981; Mayer, 1976, 1981,1985).

In the Metacourse, students learn a visual model of what happens inside the computer
during program execution to help them interpret exactly what the various BASIC commands do
(See Appendix A). The model is designed to help counter some of the problems of fragile
knowledge and strategic shortfall we noted in students in our clinical work. Regular use of the
model in learning commands and in envisioning the effects of single lines or chunks of code
should serve to help build a robust knowledge base of command effects. In addition, the model
can provide students with a fairly simple strategic tool for debugging. Using the visual model to
imagine precisely the actions of the computer at a trouble spot gives stoppers a tool to help them
get moving again and may assist haphazard movers by providing a focus for their activities.

6 Programming

Specifically, the model depicts variables and their values, characters on the screen, and flow
of control. The model is functional rather than technical in nature in an effort to promote visibility
and simplicity in the model (cf. DuBoulay, O'Shea, & Munk, 1981; Beveridge & Parkins,1987).
Thus, for example, the student thinks of a variable as the name of a box in memory with a number

or character string in it. This model is called the "paper computer," because students receive
paper forms displaying the visual model on which they hand execute programs. In addition, an on-
line version of the paper computer is being designed, a tutorial that presents the same visual
model of the computer and steps through a program line by line, making the requisite changes in
the comps :er state as each line is executed.

purpose-syntax-action: A framework for program constituents. In the Metacourse students

also learn an analytical scheme for understanding commands and command lines. The scheme
encourages students to consider the command's purpose, its legal syntax, and its action in the
computer world as shown on the paper computer. The purpose-syntax-action framework is used
to help students recognize, attend t.1.%, and organize the important features of a new command

when it is first encountered. Additionally, the framewoth serves as a problem-solving aid when
students write programs. In considering how to accomplish a particular programming task
students are asked to think carefully about what commands they know whose purposes may
accomplish the task at hand. When writing command lines, students are encouraged to attend to
the syntax, and to envision the action of the command, that is, the effect of the tine on the
computer. Students are also encouraged to use a "minimanual", a quick reference guide that
includes the key BASIC commands organized according to the purpose, syntax, and action
questions, with examples (See Appendix B). As students gain programming experience and
become comfortable in using the framework for individual commands, they are introduced to the
utility of employing a similar organizational strategy for larger "patterns" of code. (Patterns will be
discussed below.)

The choice of terms in the framework is derived in part from the contrast between
programming pragmatics, syntax, and semantics, and in part from a model for learning developed
by Perkins (Perkins, 1936a,b). Purpose has a major role in the triad as a means to counter some of

the problems of fragile knowledge, specifically that of inert knowledge. In earlier clinical studies it
was found that often students had a knowledge of relevant command structures, but could not
retrieve them, apparently failing to make the connection between what needed to happen in the
program and the commands that would serve the purpose (Perkins & Martin, 1986; Perkins,
Martin & Farady, 1986). The attention to syntax is based on earlier observations noting the degree
to which BASIC and LOGO program performance among novice programmers can be affected by
problems of a purely syntactic nature (Perkins, Farady, Hancock, Hobbs, Simmons, Tuck, & Villa,

1986; Perkins, Farady, & Martin, 1986). The emphasis on the action or semantics of a command
line stems from the desire to help students construct and utilize a robust knowledge base of

command effects as described above in the discussion of visual models.

Programming 7

patterns: thinking beyond individual commands. The Metacourse emphasizes the

importance of organizing programming knowledge not only in terms of individual commands but
also in terms of multiple lines of code that work together to accomplish a particular task or subtask.

Such recurrent schema are called "patterns," a term roughly synonomous with the "programming
plans" described by Soloway and colleagues (Soloway & Ehrlich, 1984; Joni & Soluway, 1986).
Patterns provide an intermediate level of analys.s between the whole program and individual

command lines, and offer a way of helping students to organize and comprehend code used for
frequent prot7amming tasks such as counter variables, certain compound conditional branches,
and so forth (See Appendix C). The Metacourse stresses the importance of patterns as an
intermediate level coding strategy as well as a debugging strategy.

Writing a program: Planning. coding. checking. and debuadina. Test results and teacher

comments from our previous study indicated that students needed additional instruction in
planning and writing whole programs. Thus the revised Metacourse provides students with a
procedure for writing programs that emphasizes the importance of planning, checking, and
debugging in addition to the actual coding of a program. Another major point of emphasis is that
writing programs is a process of refinement, involving multiple rounds of these four activities.

As a first step in top-level planning, students are encouraged to think in terms of
"interactions" with the user. The interaction refers to the sequence of computer outputs and user
inputs that occurs as a user uses a program. This heuristic offers a concrete beginning point for
the novice programmer, who frequently experiences difficulties in moving from a given problem
statement to the initial stages of the task decomposition. For many programs, an outline
according to the "rounds" of interaction provides a decomposition into subunits that amount to
subproblems in the programming task. An initial focus on interactions as the student begins to
program can help to avoid the frequent problem of moving from a problem statement directly to a
coding phase without sufficient thought and effort devoted to planning.

From this initial breakdown of the problem, students are asked to conceptualize program
sections In terms of the patterns that might serve the section purposes. The patterns provide the
student with the tools to manage and create code above the level of a single command line.
Students are taught the utility of having a repertoire of patterns that are portable across programs.

Thus, for example, if a student recognizes the need in a program to implement code that will trap
unreasonable inputs from the user, the student can call on a "bulletproofing" pattern to help with
that task. This simple pattern includes a conditional branch that rejects inappropriate inputs,
prompting the use for another input.

At each level of the planning and coding stages students are encouraged to consider the
purpose of chunks of code and the ectio' those chunks actually effect. Students are taught to
check their code, mentally simulating the action of the program line by line to catch the "easy"
bugs before the program is actually run and tested. The Metacourse also emphasizes that bugs
and debugging are an inevitable and integral aspect of program production, not a reflection of
poor programming.

8 Programming

Assessment Procedures

A pretest in general cognitive skills was administered at the beginning of the term. At the
end of the term, the cognitive skills test was readministered to test for possible transfer effects,

and a general BASIC skills test was given to test for mastery of BASIC. Both tests are described
below.

Cognitive skills pretest-posttest (Appendix DI. A cognitive skills test was developed with two

purposes in mind. First, such a measure might be expected to correlate with programming
performance (most cognitive skills are interrelated), and thus serve as an indicator of level of
general student ability in comparing treatment and control students. In addition, it seemed
sensible to probe the possibility of transfer of cognitive skills. In general, findings on transfer from
programming have been negative (Kurland, Pea, Clement, & Mawby, 1986; Mawby, in press; Pea
& Kurland, 1984a,b: Solomon & Perkins, in press), nor was the Metacourse specifically designed
to promote transfer. However, there have been occasional positive findings (Clements, 1985;
Clements & Gullo, 1984) and the issue has great currency, warranting an effort to examine the
question of trar-fer in the present study.

The cognitive skills instrument was designed to test skill in formal syllogistic reasoni,g,
complex linear reasoning (e.g. "If the day after tomorrow were Thursday, what would the day
before yesterday be?"), field-independence and planning (a task of counting the number of
triangles in a complex diagram). In addition, the test incorporated an algebraic version of the well-

known students-and-professors problem (Clement, Lochhead, & Monk, 1981) where students
typically have great difficulty translating a simple algebra word problem into an algebraic equation.
Soloway and his colleagues have suggested that computer programming experience may help
students deal with this sort of problem more effectively (Ehrlich, Soloway, & Abbot, 1982;
Soloway, Lochhead, & Clement. 1982). A further item relating to accuracy and precision of
observation and description, required the student to accurately describe a complex geometric
figure in order for another student to be able to recognize it amongst a set of similar complex
geometric figures.

The cognitive skills test also included a problem of a type quite similar in character to a
programming problem involving combining patterns in a program-like way. Students had to
generate a description of some events using a restricted language containing the words "repeat"
and "decide". (The design of these problems was suggested by Ellen Mandinach of the

Educational Testing Service); in prior research, when the rare case 1 transfer from programming
has been found, it has emerged most often on tasks with marked similarity to programming (cf.
Kurland, Pea, Clement, & Mawby, 1986; Linn, 1985).

%

r

.,

Programming 9

Finally, in addition to the purely "cognitive" aspects of the pretest, we also included a series
of questions designed to address a particular attitudinal factor, locus of control (Rottvr, 1966).
Research in this area (Dweck & Bempechat,1983; Dweck & Ucht, 1980), es well as studies of

performance in the programming domain (Perkins, Martin & Farady, 1986; Zelman, 1985), point to

the importance of attending to feelings of confidence and control in student performance. Thus
we included a 10 question subtest derived from the "attribution of intellectual responsibility scale"
(Rotter, 1966), measuring internality /externality of contr.' in positive and negative intellectual
situations.

BASIC test (Appendix TheThe BASIC test was a fairly standard paper and pencil

programming test, comprising 16 items. The problems were formulated to evaluate certain
general programing skills the ability to hand-execute, debug, break a problem into subtasks -- as
well as to test knowledge about programming commands typically presented in an introductory

BASIC course (e.g. PRINT, LET, INPUT, FOR/NEXT, IF-THEN). The test was also designed to

include certain language independent bugs identified by Pea (Pea, 1986) .

The first nine problems tested simple production and recognition skills, usually requiring
production of only one line of BASIC code using one command statement. The last seven
problems included three hand-execution problems, one debugging problem and three longer
programming problems requiring somewhat more complex structures such setting up counters,
use of for-next loops and the like. The 16 problems are briefly described below.

Simple one line command problems (1 - 9):

1. PRINT-string: The student is asked to write the code that would result in a specific
string
being printed on the screen.

2. PRINT-number: A specific number is to be printed on the screen.
3. INPUT - number. A user is prompted to type in a number.
4. LET-number. Set a variable to a number.
5. LET-expression: Sct a variable to the result of an operation.
6. LET-string: Set a variable to a string.
7. IF/THEN: If a given condition holds, print an expression.
8. FOR-loop: fill in blanks to complete a simple For/next loop.
9. GOTO: Fill in a blank to complete a Goto statement.

Hand execution problems (10, 11 and 13):

10. Given a short program, show what will appear on the screen when the program is
executed.

11. Garden path: Same as 10 above, except that what will appear on the screen when
the program is executed is not what one would expect the hand-executor is led
down a garden path.

13. Parallelism bug: Same as 10 above, except that the student is given a program in
which the individual commands are correct, but are presented in the wrong order.
This was designed to test for skill in recognizing what Pea (1985) calls a parallelism
bug, the assumption by programmers that the computer is able to execute more than
one line of code simultaneously (in which case order would not be important).

10 Programming

Debuaaina orobaun (12 see also problems 11 and 13):

12. Egocentrism bug: The student is given a program with an INPUT statement missing
because they often assume that the computer is aware of what they are thinking

pz.,1111problems (14 - 16):

14. FOR-loop: Using a FOR/NEXT loop, writs a program that will print the numbers 1
through 10 on the screen.

15. IF-loop: Same as problem 14, except that the loop is created using an IF statement.
16. Complex: The student is asked to write a more complex program tnat requires an I

INPUT statement inside a FOR loop that accumulates a sum.

gaossmom Observation

Researchers conducted classroom observations at all treatment sites, systematically
recordiwi a number of features of the classroom dynamics and instructional style, as well as items
related to the Metacourse treatment itself. Observations included two Metacourse lessons, as well
as one regular class, in each case conducted by a single research assistant assigned to observe

ie or two teachers. Assignments of multiple observers to a class were not made for three
reasons. First, we wished to be as non-obstrusive as possible and thus each teacher and class

could get comfortable with a single outside observer. Further, it would have exceeded our
personnel resources to provide rr.utiple observers. Finally, since our main comparsions were
between Metacourse and non-Metacourse lessons in the same classes, inter-rater relability was
not an issue.

The majority of the items on the observation instrument (See Appendix F) were rated on 7-
point Liken scales (where 7 is the highest rating and most desirable score). These included
situational factors such as student- teacher and student-student interaction, student
responsiveness and engagement, and teacher presentational style. Items relating specifically to

the Metacourse included fidelity to the Metacourse and infusion of Metacourse concepts into the
Metacourse lessons. In the area of classroom interactions, the scales measured amount and
quality of intervlions between students and teachers and among students. General types of
student particip,-"on were scored, measuring the degree to which students engaged in process-
a^d produt4-0,A;,' Ng. participation, Students (as a group) were also rated on preparedness for
the mateit,' prds:;i,,ed. Teachers were also rated on mode of instruction (e.g., presentational,
interactive', t.12'1, ; c ie."(' of comfort with the material presented. Observers noted whether the
instruction , '...V:) efl} , edging activities between: programming and other academic disciplines
or real-life ev..u ',.. 'is. Finally, observers used the 7-point scale to give an overall rating of
effectivenest, of instruction.

In the observations of Metacourse lessons, fidelity to the lessons was rated, based on
adherenne to various aspects of the lesson (introduction, lecture, participation, explanation, and
exercises). The Metacourse lessons were also rated according to the degree to which the basic
principlos of the Metacourse had been integrated into the lesson.

i

Programming 11

Student Ouestionaire

At the beginning of the semester, students filled out a short questionnaire designed to help
assess their previous experience with computers and computer programming (Seu Appendix G).
Items were designed to determine the students' general experience with computers in the
schools, with computers in the home, and in other outside activities (e.g., computer camps). In
addition, students were asked to report previous experience in the BASIC programming language
as well as other programming languages.

Homework

Most of the nine Metacourse lessons included worksheet problems for students to complete
in class and homework assignments to be completed outside of class between lessons. The task
of sending homework and worksheet papers to ETC was rotated among the teachers so that, for
each lesson, different teachers were asked to return their students' papers. These were xeroxed
and returned as soon as possible to the teachers. Teachers returned 83% of the sets of student
homework and worksheets asked for (25 out of 30). Teacher response was better toward the end
of the Semester than the beginning. Each student's homework was "graded" and the total
number of students making a particular number of errors on each problem was recorded.

Coding Procedures

Cognitive pretest-posttest. The cognitive test included several types of problems. The-

days-of-the-week problems and the students-and- professors (formula) problem were scored
either 0 for correct, or 1 for incorrect. In the triangle-count problem, the correct answer was scored
0. If the student reported more than the correct number of triangles, the score was the excess

with a minus sign; if fewer, the score was the shortfall with a plus sign.

The description-of-geometric-figure problem and the repeats-and-decides problems
required special conventions because of the complexity of possible responses. In the geometric
problem, the following categories were scored: 1) right figure kept, 2) geometric shape omission,
and 3) position omission. If the correct figure was kedt the student scored a 0, and one point was
added for each shape in excess kept. For the shape category, the student scored a 0 for correct
description of shapes, 1 if one shape was omitted, 2 if both shapes (square and rectangle) were
omitted. If the correct positioning of the squares was correct the student scored a 0, 1 for one of
the relationships was missing, 2 if both relationships (top-bottom/spread out) were omitted.

In the repeats-and-decides problem, form, order and content were defined as scoring
categories. Form referred to the writing of commands in the correct format. Order, referred to the
correct ordering in a sequence of commands. Content concerned whether the student's repeats

and decides "program" would do the assigned task. All categories were scored 99 if the student

did not try the problem. Otherwise the categories were scored on a 0 to 4, where 0 designated a
perfect answer, 1, a single error and so forth up the scale to 4 which indicated insufficient data/
misunderstood task or for the form category, repeats and decides not used.

12 Programming

The Attribution of Intellectual Responsibility scale was scored in the usual manner in terms of
which alternative (internal or external locus of control) was chosen on the 5 positive and 5
negative intellectual situations.

BASIC test. The students' performance on the BASIC test was scored in a number of

different categories. Many of the categories suited only certain problems, for instance, the
counter category applied only to problems that included a counter. Each of the 16 problems was
scored for errors by noting whether or not a student's response included certain specific features.
Responses to Problem 1 (PRINT-string), for example, were scored for two features, or error
categories. To be error free, a response needed to include a correct PRINT command (the first
error category) as well as a quoted string (the second category). The sample response (1) below
would be scored as having 0 errors it is correct. Response (2), however, would be scored as
having 1 error; the PRINT is correct, but the quote category is scored as incorrect because the first
quotation mark is missing.

(1) PRINT *the answer is car_
(2) PRINT the answer is car_

Some problems called for an "extraneous statements" category. This was scored when an extra

statement or set of statements was added to the program, which may or may not have resulted in
an error, but showed clearly that the student had an improper model of machine semantics.
Several other categories corresponded to the use of various program constructs; for instance the
positioning of PRINT statements, FOR-NEXT statements and the like. The number of error
categories scored for a problem ranged from one in problem 9 (the fill-in-the-blank GOTO
problem) to ten in problem 16 (the complex production problem).

Sislrinagmeltrit. Using the scoring system described earlier, 4 scorers on the cognitive
test and 2 scorers on the P "kSIC test worked independently to code the students' responses to

the test, crosschecking periodically with one another and establishing policies to clarify the
scoring system. The coding was blind with respect to whether the response came from the
treatment or control group, or from a pre or post-test. While every student response was not
coded by all scorers, the scorers all coded and discussed a random subsample. Policies that
could affect prior scoring were applied retroactively.

After about ten percent of the data had been scored the scorers deemed themselves to be
adequately calibrated. The remainder of the coding provided the basis for calculating interjudge
agreement. Disagreements were discussed and resolved, though original scores were retained
for calculating the agreement. All the coding was used for the data analysis in other respects, on
the grounds that divergences had been discussed and resolved and principles applied
retroactively to the coding before the calibration. These procedures resulted in very high
interjudge reliabilities on both tests with correlations of .90 or greater in all cases.

Programming 13

In order to determine whether any of the judges tended to score significantly higher or lower

than the others, the mean score and standard deviation for each judge were calculated and
compared for the totals on both the BASIC and Cognitive tests. In each case ANOVA indicated
no significant differences among the judges. Therefore, for those tests that were multiply scored,
the judges scores were averaged, while for those tests that were scored by only one judge, that
score was used in all analyses.

Results

Fidelity to Metacourse Lessons as Written

Of critical importance in evaluating any educational intervention are questions related to how
it is actually implemented. We observed a number of Metacourse, and non-metacourse lessons
taught by each teacher in order to assess how the teachers and students responded to the
materials. We found that the teachers covered the content of the Metacourse with good fidelity,
usually rated around 5, where 7 was described as teaching the material "almost exactly as written"

and 4 indicated "the same or very similar content of lesson as written, but adapted and

paraphrased". This was consistent with the rating observed in our preliminary study, also about 5.
It appears that the lessons were either paraphrased or presented in a manner very similar to how
they were originally written.

Teachers were usually rated as covering three quarters of the material in each lesson quite
adequately and also as referring appropriately during the Metacourse lessons to the major
principles stressed in the Metacourse, ie. the paper computer, purpose, syntax, action, patterns,
with the exception of the minimanual which was very rarely mentioned. Thus the minimanual may
be an underutilized resource, at least in terms of its integration into the instructors' presentations.

In contrast to the generally good coverage of the lessons and principles of the Metacourse,
teachers had much more difficulty in pointing out bridges or applications either to other academic
disciplines or problems in real life. Such bridges were noted in only about 10% of the classes,
whether they were Metacourse or non-Metacourse lessons.

Homework

The primary purpose for the homeworicAvoricsheet analysis was to determine whether or not
teachers and students were actually able to use the assignments. The analysis indicated that they

were. Students seemed to find the assignments appropriate and of reasonable levels of difficulty.

14 Programming

The secondary purpose was to determine where the Metacourse lessons might be
improved. In general, the homework analysis was most useful in detecting problems, not
strengths, in the Metacourse and was best interpreted in conjunction with teacher comments.

This analysis, along with teacher comments was used in preparing notes to be used for teachers
in a future study in which potential problems in implementing the Metacourse could be
addressed.

Some specific problems noted during the analysis included the following: 1-:, a number of
students had difficulty hand executing simple programs that included PRINT and LET statements

containing expressions; (b) many students did not adopt the pointer that the Metacourse
suggested they use to keep track of the current line during hand execution; (c) PRINT/INPUT
combinations confused many students the PRINT statement preceding the INPUT statement
often interfered with hand execution of the INPUT statement; (d) the Assume User Types area of
the computer world was not used by some students, perhaps because this was not explicitly
modeled by teachers; (d) many students did not attempt to identify patterns in problems,
presumably because they did not understand this concept; (e) a common hand execution
problem with somewhat more complicated programs was to miss one of the many required steps
(e.g., changing a variable in the Varieties Area of the Computer World each time it is encountered
in a FOR/NEXT loop). Many of these same difficulties manifested themselves later on in the
BASIC end of semester test.

Diff9rences between Metacourse and Ordinary Lessons

As in our previous study, observations from the experimental sites were examined for
differences in student and teacher behavior when Metacourse lessonswere taught as compared
to when ordinary lessons were taught. Of particular interest were any major differences in what
went on in class during such lessons and whether these seemed disruptive or beneficial. Since in
each case the observations of a particular class were made by a single observer who was not blind
to the type of class being conducted, these results must be interpreted with caution. However, it
should be noted that the observers were generally quite experienced, the variations reported
between teachers were not large, and the general pattern of results appears quite reasonable.

There were few surprises in the results we obtained. As in our previous study the teachers
seemed somewhat more com'ortable when presenting their own lessons (mean rating of 6.9)
compared to the new ketacourse material (mean rating of 5.8). However, both scores are quite
high (7 point scale) indicating general comfort with both old or new material. Similarly were found
large differences between teachers' styles with non-Metacourse lessons rated as almost twice as
interactive (60% vs. "2%), while somewhat less presentational (26%vs. 15%) than Metacourse
lessons. During Metacourse lessons the data suggest that more time was spent in lecture (25%
vs. 12%), demonstrations (20% vs. 11%), and in hand execution exercises (21% vs. 9%), and
less time in discussion (23% vs. 40%), and "other exercises (18%vs. 48%). Student behavior
during both types of classes was rated as quite responsive, attentive, engaged, and interactive
with thoir teachers (ratings generally over E in both types of classes; however, there was
apparently more interaction among students during the non-Metacourse lessons (mean rating of
5.4 vs. 3.4). No differences were observed in terms of the nature of such interactions, with both

t

Programming 15

teachers' and students' interactions described as process-oriented and product-oriented about
half the time, with very little disciplinary interaction occurring at any time. Students seemed quite
prepared for either type of lesson (5.1 for the Metacourse, and 5.7 for non-Metacourse lessons).
Finally, despite the differences that were noted, the overall effectiveness of each type of lesson
was judged quite high (5.4 for Metacourse, and 6.0 for non-Metacourse lessons).

Group Differences

The findings above seem to indicate that despite differences between normal and
metacourse lessons, the Metacourse materials were adequately covered although both the
observations and teacher self reports indicate considerable difficulty in making connections
between the material and other academic and life problems.

However, assessing the impact of the Metacourse also requires equivalence of the treatment
and control groups on other factors that might influence programming achievements, or statistical
corrections as needed. Consequently the data were examined by group to check for significant
differences extant before the treatment.

Previous Experience with Computers and Computer Programming

Most of the students in both groups had little previous experience with programming
languages. Three quarters of the experimental group and 84% of the control group had no
previous exposure to BASIC. Those few with experience, however, had minimal exposure
(typically a week or two here or there). While 24% of the experimental group had some
experience with another programming language compared to only 5% in the control group
(p<.05), this consisted in all but 2 cases in each group of a brief exposure to LOGO, some years
back. Finally a little less than half our subjects in each group (44% in the experimental and 49% in

the controls) had a computer in their home. Thus with respect to these types of experiences the
groups seemed not substantially different.

Cognitive Pre-Test

The cognitive test was assumed to be an indicator of general ability that might relate to later
BASIC performance, and in fact significant positive correlations were obtained in both groups
r=.69, p<.01) In the experimental group and (r...40, p<.01), in the control group. The Analysis of
Variance indicated no significant difference in homogeneity of slopes between the two groups
(F. 1.345, n.s.).

Overall the control group performed significantly better than the experimental group (p<.01),
commiting on average about 12 errors compared to 16 errors for the experimental group. The
range was from about 6 to 29 errors in the 9 experimental classes compared to 5 to 16 errors in the
13 control classes (A more detailed analysis of subtests is presented later when the issue of
transfer is considered.)

16 Programming

Thus the control group appears to be of somewhat higher ability than the experimental
group, yet as the data will indicate the experimental group performed significantly Letter on the
BASIC test administered at the end of the course.

Impact of Instruction on Mastery of BASIC

Tablet (next page) indicates the performance of experimental and control groups in terms of
mean errors on each of the 16 BASIC Test problems as well as subtotals for four types of
problems and the total test. Despite the apparent higher general ability level in the control group
the experimental group averaged about 5.5 fewer errors, nearly half a standard deviation overall,
than the control group. They produced about 77% correct responses compared to about 66% for
the controls (a maximum of 61 errors was possible).

Furthermore, the experimental groups did significantly better than the controls on all major
categories of problems, with the smallest advantage coming on the simple one line command

problems and the production problems (about a third of a standard deviation), and the largest on
the hand execution problems (nearly two thirds of a standard deviation).

Results for individual problems within three of the major categories Hand execution,
Debugging and Production show that the experimental group had significantly fewer errors on
every problem except one requiring the use of an IF/THEN statement to create a loop
(Problem15). In fact, both groups found it more difficult to write a program using IF/THEN after
being asked to create a program that generated identical results but used the more natural FOR
loop (Problem 14).

Interestingly, there was also no significant difference between the two groups on the
IF/THEN problem within the other major category Simple one line commands. The only
problems within this category for which there were significant differences included one which
asked students to set a variable to a string (Problem 6), one requiring the completion of a
FOR/NEXT loop (Problem 8) and one in which students needed to recognize when a GOTO
statement was needed (Problem 9). These last two problems (8 and 9) differed from the other
problems within this category because partial code was provided that, presumably, needed to be
read and understood before being completed. In this respect, perhaps, these problems were
similar to the Hand-execution problems.

The BASIC test problems described above often contained the same features or error
categories. This allowed us to undertake a finer analysis of how students handled a particular
feature across and within various problems. These additional error categories are described
below, and the results presented in Table 2.

Programming 17

Table 1. Errors (Mean Number) on Each Problem of the BASIC Test

Simple One Line_ Command Problems

1 2 3 4 5 6 7 8 9 atal
Exp. .13 .13 .53 .11 .25 .71 .88 .66 .17 3.67
Cord. .08 .11 .72 .16 .22 1.14 .88 1.13 .49 4.92
Diff. .05 .02 -.19 -.05 .03 -.43*** -.00 .47*** -.22*** 1.25"*
D/S.D .32

HancLExecutionPmblems DeBuggina Problem

1210 11 13 LAW

Exp. .28 .74 1.65 2.67 .61
Cont. .73 1.47 1.94 4.14 1.05
Diff. -.45*** -.73*** -.29* -1.47*** -A4***
D/S.D. .61 .48

Production Problems All Emblems

14 15 16 Mal Dial
Exp. 1.13 2.83 3.41 7.36 14.31

Cont. 1.60 3.11 5.07 9.77 19.88
Diff. -.47' -.28 -1.56* -2.41' - 5.57***
D/S.D. .34 .45

Experimental Group (n-120)
Control Group (n-224)

* p<.05.. p<.01
*** p<.001

;,)3

18 Programming

Simple one line command error categories (Problems 1-9):

1. PRINT (Problems 1-2): The word PRINT is not present or is spelled incorrectly.
2. Quote (Problems 1 and 3): The string following the PRINT command is incorrect or is

not preceded by a quotation mark
3. LET (Problems 4 - 6): The word LET is not present or is spelled incorreLty.
4. Assignment (Problems 4 - 6): The assignment statement following the LET command

is incorrect.
5. ACTION (Problems 7 - a): The expression following THEN in problem 7 is incorrect;

the expression between the FOR and NEXT commands in problem 8 is incorrect.
6. GOTO (Problem 9): The GOTO command or the line number following it is incorrect.
7. INPUT (Problem 3): The word INPUT is not present or incorrect.
8. MISC. (Problems 2,3,7,8): Various errors occuring in only one problem.

Hand-execution ftrror categories, (Problems 10, 11 and 13):

9. Prompt/Input (Problems 10, 11 and 13): The output generated from INPUT
statements does not include the correct prompt and/or input.

10. Output (Problems 10, 11, and 13): The output generated from PRINT statements is
incorrect.

11. Minor execution: Any execution errors not covered by other categories.
12. Format: Output is not properly formatted.Debugging error categories (Problems 11,

12, 13):
13. Bug-11 (Problem 11): The correct ("unexpected") output is not generated. This

category does not include categories like minor execution, output and so on that
were also scored in Problem 11. The only feature considered is the one directly
related to debugging.

14. Bug-12 (Problem 12): The correct INPUT statement is not added to the program (as
above, other "non-bug" categories are excluded from this category).

15. Bug-13 (Problem 13): The correct (*unexpected") output is not generated (as in
category 13, other "non-bug" categories are excluded).

Production error categories (Problems 14, 15 and 16)

16. Counter (Problems 14 and 15): The counter following the FOR come. "-
incorrect.

17. Action (Problems 14 and 15): The major action (PRINT X) is incorrect.
18. FOR (Problems 14 and 16): The FOR statement is missing or incorrect.
19. NEXT (Problems 14 and 16): The NEXT statement (NEXT X) is incorrect or missing.
20. Variables (Problems 14 and 16): Incorrect number or type of variables used.
21. Extraneous (Problems 14, 15 and 16): The program includes unneeded commands

that interfere with the running of the program or that make the solution clumsy.
22. Minor syntax (Problems 14, 15 and 16): This category includes errors not covered

by other categories that ocur in more than one problem.
23. Misc. (Problems 15, 16): Various error types appearing in only one problem.

Table 2 (next page) presents results from these individual error categories within and across
problems. Like the results presented in Table 1, these results indicate that the Metacourse
group made significantly fewer errors in each of the four major categories. However, they also
indicate that this did not occur uniformly within each major category. That is, the experimental
group, although never commiting significantly more errors than the control group, did not perform
significantly better than the controls on all error categories.

Programming 19

TABLE 2. Types of Errors (Mean Number) on the BASIC Test

Simple One Line Command Errors_ (Problems 1-9)

1 2 3 4 5 6 7 8 9
PRINT QUOTE LEI ASSIGN ACTION GO TO INPUT mks, TOTAL

Exp. .04 .23 .45 .64 .70 .27 .21 1.14 3.67
Cont. .05 .22 .80 .72 .93 .49 .35 1.36 4.92
Diff. -.01 .01 -.35*** -.v8 -.23 -.22*** -.14 a* -.22 1.25"

Hand Execution Errors (Problems 10.11.13)

9 10 11 12 13
PROMPT-INPUT OUTPUT MINOR EX, FORMAT TOTAL

Exp. .70 .13 .53 .04 1.40
Cont. 1.87 .08 .60 .06 2.60
Diff. -1.17** .05 -.07 -.02 -1.20***

DebuQgina Errors (Problems 11.12.13)

13 14 15
BUG -11 BUG-1z BUG-13 TOTAL

Exp. .48 .26 .78 1.53
Cont. .76 .48 .78 2.02
Diff. .28... -.221*** .00 -.49***

Production Errors (Problems 14.15.16)

16 17
COUNT.ACTION

18
ME

19

NEXT

20

Yiga.
21 22

EKIB.A. MIN.SYN.
23

psc, TOTAL

Exp. .48 .42 .32 .34 .52 1.02 . 96 3.30 7.36
Cont. .58 .57 .64 .76 .74 1.35 1.16 3.98 9.77
Diff. -.10 -.15 -.32*** -.42-* -.22" -.33 . .10 -.68 -2.41**

Experimental Group (n.120) * p<.05
Control Group (n -224) ** p<.01

*** p<.001

20 Programming

With respect to the "simple one line command errors" (in the first 9 problems) the
experimental group did no better than the controls on a number of simple error categories such as
PRINT and quote and assigning a value that a variable should take; however, they made about half
the errors of the control group when producing simple LET statements (error category 3) and
about one quarter less errors than the controls in specifying the action of simple IF/THEN
statement or ':OR loop (category 5).

As noted above, the experimertal groups made significantly fewer hand executor, errors on
problems that required creating a screen display when given a program (Problems 10, 11 and 13).
It appears that the experimental groups' superiority is due to its ability to repasent what a prompt
and input statement look like on the screen (Error category 9), since there were no differences in
the output , minor execution and format error categories (10,11,812).

If we in tum ignore the previous erro! types that may occur during hand execution and look
specifically at the aspects of execution that are directly related to program bugs, we find that the
experimental group is significantly better P° detecting unexpected output (Error category 13 from
the Garden Path problem). They are no Ater, however, at detecting the parallelism bug
(Category 15). Bug-12 is perhaps a more realistic debugging problem. The studentswere given a
program and simply asked to correct as well as find a bug. In this situation, the exper-mental group
was again significantly better than the non-metacourse group.

The final set of error categories to be considered are those related to the production of
whole programs. When given three programming problems, the group with Metacourse training
handled FOR/NEXT loops better, was better able to choose the correct number and type of
variables to use and produced significantly fewer unnecessary statements (error categories 18
through 21). There were no signficant differences between the two groups on the remaining
production error types. As was the case with all other variables analyzed in this study, the control
group did not make significantly fewer errors in any of the categories investigated.

Transfer

As noted in our previous reports, while the cognitive posttest provided an occasion to
examine possible transfer of cognitive skills from programming instruction it should be recalled
that such a finding was not necessarily expected from the Metacourse treatment. Most research
on the impact of programming instruction on cognitive skills has not found substantial gains,
except under very special conditions (ie. specific emphasis on transfer throughout a program,
one-or-one tutoring, and tests composed of problems formally similar to those encountered in
the programming course). In contrast, the Metacourse was designed specifically to advance
programming skills rather than to promote general transfer. Nonetheless, the data presented an
opportunity to explore the issue within this limited context.

t

Programming 21

Jmpacj on General Cognitive Skills

As indicated previously the general cognitive tests were composed of 6 separate subtests
(Sae Appendix D). There was almost no variability of the Attribution of Intellectual Responsibility

subtest. Both experimental and control groups attributed an average of between 7.7 and 7.9
questions (out of a possible 10) to internal factors, both on pre and posttests. Analysis by positive
or negative outcomes yielded similar results. Thus most of our sample attributed their successes
and their failures primarily to internal causes, both prior to and after the BASIC programming
course. This variable was tnerefore excluded from all further analyses.

Table 3 (next page) presents the performance of each group on each of the other 5 subtests
and their total score for both pre and posttests.

As indicated previously the control group made significantly fewer errors on the pretest
overall than the experimental group (p<.001). Analysis by subtests indicated that this superiority
manifested itself on three of the five subtests (conditional reasoning, precise visual description,

and repeats and decides), while no initial differences were found on the visual planning or
professors/students problems.

Surprisingly the experimental group improved by about three fewer errors on the posttest,
compared to virtually no gain for the contra_ group. It is unlikely that this highly significant outcome

(p<.001) would be due merely to regression to the mean. Analysis of the data from the
component tests indicates that this result is due almost entirely to the considerable improvement
of the experimental group or the Repeats and Decides subtest, compared to a modest decline in
performance on the part of the control group on that same problem. Thus some evidence of
transfer was observed, but It occurred only on the problem most closely related in its formal
structure to that of producing coherent comands in a programming language.

Teachers' Rea (-lions to the Metacourse

Since this st' '', was conducted within the laboratory sites context described earlier, we
received frequerk ..._ Jback from the teachers concerning the metacourse materials. The
teachers were in general quite positive in their evaluation of the revised metacourse. The utility of
the visual model of the computer world, the purpose, action, syntax analysis and 1 ..1 emphasis on

patterns received the most praise. The length of some lessons, and the difficulty of integrating
these long, rather rigid lessons smoothly into their normal course were most often cited as
negative features. Many teachers indicated that they wanted more freedom than the tightly
controlled conditions of the experiment permitted. It was apparent that infusing new concepts
Ir'o their normal lessons is a skill not quickly mastered, and while we would expect easier

integration "the second time around," future interventions need to address these concerns.

I

22 Programming

Year End Follow-up

A number of our experimental and control groups happened to be year-long BASIC
classes, which enabled us to collect some evidence on the longer term effects of the
Metacourse on competence in BASIC Programming. As indicated in Table 4 we were able to
retest a subset of students from each group in June of that year on an equivalent BASIC test
(Identical problems with numbers changed). The results of this analysis must be interpreted
with caution since both the experimental and control groups were selected sub-samples of
the original groups. In particular, all seniors had already left along with those students who
had been in the one-semester BASIC courses. The experimental sub-group, and
particularly the available control sub-group, were superior in performance to the original
experimental and control groups the experimental subset made about one less error then
the original experimental group, while the control subset made nearly five less errors than
their original counterparts (see Tables 1 and 4).

With these cautions in mind, note that the experimental sub-group maintained their

performance over the year with roughly the same number of errors in June as in January.
The control sub-group actually improved their performance over this time by about two fewer
errors. This enhanced performance may be attributed to the fact that after the first
semesters testing the control teachers were sent all the Metacourse materials and told they
would be free to use them as they wished now that the formal experiment was over. Thus ma
ny of these students may well have been exposed to Metacourse concepts during the
second half of the year. The fact that the control sub-group was a much superior sub-set of
the original group, and could be expected to continue to improve throughout the year, may
be a further factor.

Discussion

The large scale study reported here was undertaken in order to assess the effects of
a "metacourse" which was designed to enhance novices' teaming of BASIC by providing a
small number of key concepts and strategies that, our clinical research revealed, many

students fail to acquire on their own (Perkins, Hancock, Hobbs, Martin, & Simmons,1986;
Perkins & Martin, 1986; Perkins, Martin , & Farady, 1986; Perkins, Farady, Hancock, Hobbs,
Simmons, Tuck, & Villa, 1986). A pilot study reported in Perkins, Farady, Simmons & Villa
(1986), employing an earlier version of the Metacourse, although encouraging, produced
little hard evidence on its effectiveness. It was hoped that the current study would be able to
provide stronger evidence on the issue.

Programming 23

TABLE 3. Errors (Mean Number) on Problems In the ...ognitive Pre-
and Post-tests.

ii ;

Conditional Reasoning Visual Planning

pretest Posttest min Pretest Posttest Clain

Exp. 1.71 1.56 .15 6.24 4.92 1.32
Cont. 1.36 1.33 .03 5.26 4.81 .45

Diff. .35** .23 .12 .98 .11 .87

Problem Type

Professors/Students Precise Visual Description

pretest Posttest afita Pretest Posttest gain

Exp. .72 .76 -.04 2.87 2.63 .24
Cont. .68 .54 .14 2.02 2.03 -.01
Diff. .04 .a* -.18* .85** .60* .25

Problem Type

____EteattalsznsiDecirlas Total

pretest Posttest cum Pretest Posttest Qat
3.40 16.34 13.22Exp. 4.84 1.44 3.12

Cont. 2.95 3.53 -.58 12.34 12.29 0.05
Diff. 1.89*** -0.13 2.02 ** 4.00** .93 3.07***

Experimental Group (n -122) p<.05
Control Group (n-219) ** p<.01

** p<.001

24 Programming

TABLE 4. Errors (Mean Number) on the BASIC Test of Experimental and
Control Students In Year-Long Courses.

January Test June Test Difference

Exp 13.30 13.10 .20
Cont. 15.00 13.00 2.00**

Experimental Sub-Group (n-60) ' p<.05
Control Sub-Group (n-43) ** p<.01

Programming 25

As in our previous report it is appropriate to consider the three questions: Did the
Metacourse prove leachable, leading to an implementation that smoothly provided the intended
concepts and practice in their use? Did the Metacourse have the hoped-for impact on students'
mastery of programming? Did the Metacourse, or the normal programming instruction in the
control groups, have a cognitive impact beyond the targeted instruction? Finally questions of
possible long term effects, and futura directions should also be briefly considered.

Teaching

Once again the data indicate that at least for experienced teachers under conditions of
considerable support the Metacourse was quite teachable and could be integrated into the
normal curriculum in BASIC. Although the Metacourse lessons produced a variety of differences
in teacher style of presentation as well as student behavior, compared to the normal lessons, both
teachers and students appeared to adapt well to the new material with a number of indicators
pointing to effective classes. Further it may well be the case that some of these differences in
observed behaviors (e.g., amount of student-teacher interaction) might be due to the fact that
this was the first time the teachers used the materials, and that such differences may diminish as
teachers get more familiar with the material.

The evidence on the extent to which the instructors were able this first time through to
"infuse" the key Metacourse concepts into their entire course is not as clear. We did find that
during the Metacourse lessons teachers referred to earlier key concepts quite often, but the
results are not clear from the limited number of non-Metacourse lessons we could observe as to

how often these concepts were used in regular classes. We did note a general absence of
bridges or applications of these concepts to any areas outside of the programming problems

themselves. It seems clear that deliberate efforts have to bo orchestrated if such bridges are to be
built.

Transfer

Although our results were in general consistent with most of the literature, in that there was
little evidence of transfer either on most cognitive tasks or on our affective measure, we did obtain
evidence of transfer on one subtest that was structually somewhat similar to a typical programming
task. It may also be the case that an affective instrument more specifically focused on students

attitudes concerning errors may yet reveal some changes in this realm.

As we have pointed out previously, we believe a kind of tradeoff may exist between teaching
for programming competency and teaching for transfer of cognitive skills from programming

(Perkins, Schwartz,& Simmons,in press). The metacourse as currently designed still focuses on
the development of programming competency rather than transfer of general cognitive skills. We
provide little that does not have direct bearing on programming competency.

Impact on programming mastery

It is clear that our experimental groups evidenced a considerable advantage in their general

competence as beginning BASIC programmers compared to the control groups. Further, the

31

26 Programming

results indicate that this improvement is manifested on a variety of programming skills, such as:
use of correct syntax to perform simple operations, ability to trace the actions of a program through

hand execution, and the ability to debug and produce simple programs. The evidence also
suggests that this mastery of elementary BASIC skills does not deteriorate over a 5 month period
after the formal intervention had been completed. While the Metacourse did not produce
enhanced nerformance on every problem, e.g., detecting the "parallelism bug" (Pea,1985), it did
produce fewer errors on a variety of significant problems typical of those encountered in an
introductory BASIC course. What is not so apparent is the cause of the improved performance. A
number of possibilities are plausible, and the results may well be due to a combination of factors.

We would hope that the Metacourse with its emphasis on the students' development of

mental models through which they understand what the computer does, strategies by which to
organize their problem-solving efforts, etc. played a significant role. However, it must be
acknowledged that the "laboratory sites" intervention of which this study was a part was an atypical

treatment in that the participating teachers received much more support than is normally the case
when a new curriculum intervention is introduced. Further, we could not randomly assign
teachers to treatments. The laboratory site high school programming teachers were all required to
use the Metacourse, while the control group was formed by soliciting volunteer teachers at similar
high schools. While the teachers In both groups were experienced teachers of BASIC, it is
possible that our treatment teachers were simply a group of exceptionally talented instructors who

could produce large gains even with a treatment with which they were unfamiliar. One should
note that our study, like most in the field, pits teachers using a treatment program for the first time
against controls who employ their "normal" curriculum which they have typically worked through
many times. A second stuciy was therefore designed to help resolve soma of these ambiguities.

STUDY 2

Method

In this study the revised Metacourse was used by 9 other teachers in 7 naw high schools
under conditions that more nearly duplicate normal classroom innovations. That is, these
teachers were given the Metacourse along with some "Metacourse memos" (notes to teachers on
experiences teaching with the Metacourse), and are provided with no other supports. No
observations were made of these classes . The same assessment instruments were employed as
in the previous study. It was hoped that results from this study would help delineate the
significant factors influencing the improved performance in BASIC.

f

Programming 27

TABLE 5. Errors (Mean Number) on Each Problem of the BASIC Test for
Study 2.

Simple One Line Command Problems

1 2 3 4 5 6 7 8 9 "at
Exp. .10 .17 .36 .11 .25 .74 .76 .78 .26 3.53
Cont. .08 .11 .72 .16 .22 1.14 .88 1.13 .49 4.92
Diff. .03 .06 -.36*** -.04 .03 -.40"* -.12 -.35" -.23- -1.39**
D/S.D .36

and Execution Problems De Bugging Problem

10 11 13 La 12

Exp. .41 .97 1.72 3.10 .84

Cont. .73 1.47 1.94 4.14 1.05
Diff. -.32*** -.SO*" -.22 -1.04*** -.21

D/S.D .43 .22

Prodaction Problems All Problems

14 15 16 Isla' Isla'
Exp. 1.53 2.29 3.83 7.66 15.12

Cont. 1.60 3.11 5.07 9.77 19.88
Diff. -.07 -.81* -1.23" -2.11* -4.76***
D/S.D .29 .39

Experimental Group (n.120)
Control Group (n.224)

* p<.05
" p<.01

p<.00i

28 Programming

Proportion
of

Errors

.40

.38

.36

.34

.32

.30

.28

.26

.24

.22

.20

.18

.16
.14

.12

.10 ri

Kei

0 ExP lido
Exp. Nam

ill Control

One Line
Command

Hand Execution Debugging Production All Problems

M9101' Problem Types

Figure 1: Differences in Errors (Mean Proportion) of One Control and Two
Metecourse Groups on Major Problem Types In the BASIC Test.

t

Programming 29

TABLE 6. Differences In Errors (Mean Proportion) of One Control and Two
Metacourse Groups on Major Problem Types In the BASIC Test.

Problem Type

One Line_CommandPralems

Prop. Errors Exp.- Control (Diff.)

Differences

Hand Execution Problems

Prop. Errors Exp.- Control

1) Exp.- Lab .18 1 vs 3 . .07*** .21 1 vs 3 .11***
2) Exp.- Norm .18 2 vs 3 . .07** .24 2 vs 3 . .08***
3) Control .25 .32

Problem Type

el21192i1XLELO122133_ Production Problems

Prop.Errors Exp.- Control (piff.) Prop. Errors Exp.- Control (Diff.)

1) Exp.- Lab .20 1 vs 3 .15*** .29 1 vs 3 ..10***
2) Exp. - Norm .28 2 vs 3 -.Or .31 2 vs 3 ..08**
3) Control .35 .39

1) Exp.- Lab

2) Exp.- Norm

3) Control

Prop.Error

.23

.25

.33

Problem Type

All Problem__
Exp.- ControliDiff.1

1 vs 3 . .10***

2 vs 3 . .08***

Experimental Lab Group (n =120)
Experimental Normal Classroom Group (n.120)
Control Group (n.219)

' p<.05
** p<.01

*** p<.001

30 Programming

TABLE 7. Analysis of Variance of Errors Made by Treatment and Control
Group on Problem Types in the BASIC Test.

SOURCE SS DF MS F

Between Groups

Treatment Groups 745.6 2 372.8 10.3***

Subjects within groups 15711.3 433 36.3

Within Groups

Problem Type 11136 1 3 3712.0

Treat. x Prob. Type 213.9 6 35.7 3.0**

Prob. x Sub. within Groups 15258.9 1299 11.8

' p<.05
.* p<.01
*" p<.001

.

Programming 31

TABLE 8. Types of Errors (Mean Number) on the BASIC Test

Simple One Line Command Errors (Problems 1-9)

1 2 3 4 5 6 7 8 9
PRINT QUOTE LEI ASSIGN ACTION GO TO INPUT MISC, TOTAL

Exp. .09 .14 .48 .63 .80 .26 .20 .93 3.53
Cont. .05 .22 .80 .72 .93 .49 .35 1.37 4.92
Diff. .04 -.08 -.33*** -.09 -.13 -.23*** -.15** -.44" -1.39**

Hand Execution_Errors (Problems 10.11.13)

9 10 11 12 13
PROMPT-INPUT OUTPUT MINOR EX. FORMAT TOTAL

Exp. 1.37 .06 .81 .00 2.25
Cont. 1.87 .08 1.17 .06 3.17
Diff. -.49' -.02 -.36** -.06 -.92***

Debugging Errors (Problems 11.12.131

13 14 15
BUG-11 BUG-12 BUG-13 TOTAL

Exp. .56 .30 .84 1.69

Cont. .76 .48 .78 2.02
Diff. -.20*** -.19** .06 ..33.

Production Errors (Problems 11115.161

16 17
COUNT. ACTION

18
EQB

19
NEXT

20 21 22
MI MBA. MIN.SYN.

23
MISC. TOTAL

Exp. .50 .49 .44 .62 .68 1.03 .56 3.35 7.66
Cont. .58 .57 .64 .76 .74 1.35 1.16 3.98 9.77
Diff. -.09 -.08 -.20* -.14 -.06 -.32* -.60"** -.63 -2.11'

Experimental Group (n -120) p<.05
Control Group (n-224) *" p<.01

**" p<.001

32 Programming

TABLE 9. Errors (Mean Number) on Problems In the Cognitive Pre-
and Post-tests.

em

Conditional Reasoning Visual Plannina
Pretest Posttest rain Pretest Posttest rain

Exp. 1.53 1.41 .12 5.31 4.53 .78
Cont. 1.36 1.33 .03 5.26 4.81 .45
Diff. .17 .07 .09 .05 -.28 .33

Problem Type

Professors/ Students Precise Visual Dsce

Pretest Posttest cult Pretest Posttest Clain

Exp. .72 .63 .08 1.82 2.28 -.47
Cont. .68 .54 .14 2.02 2.03 -.01
Diff. .03 .09 -.06 -.20 .25 -.46

Problem Type

32122alLalifineCideS Total

pretest Posttest alba pretest Posttest fula
Exp. 3.08 3.50 -.42 12.44 12.35 .09
Cont. 2.95 3.53 -.58 12.34 12.29 .05
Diff. .13 -.03 .16 .10 .06 .04

Experimental Group (n-122)
Control Group (roi219)

* p<.05
p<.01

*** p<.00i

Programming 33

Results

The results of our second study are presented in Tables 5-9, which correspond to the

analyses performed on the data from the Laboratory site study. Note the pattern of errors
obtained in the new study (Table 5), is nearly identical to that obtained in the first study (Table 1)

with the experimental group performing better than controls on all four major types of problems,
with an overall advantage of about .39 of a standard deviation, compared to the .45 standard

deviation advantage obtained previously. This patt3m can be seen more clearly in Figure 1 and in
Table 6, where the proportion of errors of each experimental group are compared with each other
and the control group for the four problem types, and overall. The students in the "normal"
metacourse treatments do about as well as those in the laboratory site" conditions, but in all
cases make significantly fewer errors than the controls (Tukey lsd protected test). As expected
all groups make the highest proportion of errors on "production problems", and the fewest on the
"one line command problems". An Analysis of variance of these results (Table 7) confirms the
treatment effect , as well as a statistically significant treatment group by problem type interaction

indicating that the laboratory site groups made somewhat more simple one line command errors
than the normal 3xperimental group, but less of the other three types of errors. (The F for problem
types is not of interest since each problem type had a different number of errors possible). c,

Likewise the finer grain analysis in terms of individual types of errors (Table 8) compared to
the same analysis in the original study (Table 2) , again confirms the earlier picture. The
experimental groups were never outperformed by the controls, and did significantly better except
in a few cases. Thus on the Debugging errors we again find the experimental group making

significantly fewer errors on all problems except the parallellism bug (category 15). While the
advantage of our experimental groups on production errors did not in all cases reach statistical
significance compared to the controls, the trends were identical to those found previously.

The results obtained on the Cognitive Post-test (Table 9) did contrast somewhat with those
obtained previously (Table 3). We had found a significant gain in performance in our laboratory
site experimental groups compared with controls due primarily to a strong improvement on the
"repeats and decides" sub-test. However-, in the second study there were no significant
differences between the experimental and control groups on any Cognitive Post-test measures.

Discussion

The results of our second study lend strong support to the hyothesis that the
Metacourse In BASIC can produce significant improvement in the mastery of that language in
a one semester high school course. Under conditions more nearly duplicating those found
in "normal" classrooms, we again found significantly enhanced performance in our
Metacourse groups on an end of semester BASIC test. Further the analysis of the students
performance on the different types of problems also mirrored the pattern found inour first
study. The BASIC Metacourse seems to be an intervention that programming teachers can
readily adopt and incorporate into their normal instruction even without specal training and

34 Programming

support. While modest in scope, this "vitamin shot" is likely to produce significantly better
mastery of BASIC in their students.

The situation is quite different with respect to transfer. While we obtained some
evidence for "near transfer (on the "repeats and decides" problem) in our laboratory site
study, even this modest evidence of transfer washed out in our second study under more
"normar classroom conditions. Thus we have further confirmation of the common finding
that transfer from programming is not normally obtained unless special efforts are made

explicitly to design such elements into the intervention. Where transfer was explicitly
discussed and valued with our laboratory site teachers, some modest transfer was obtained,
but not so in the "normar classroom situation without these supports.

FUTURE DIRECTIONS

While the results obtained in these studies are encouraging, even the performance
of the treatment groups on our BASIC end of semester test under the laboratory site
conditions, left considerable room for improvement (77% correct responses). Further,
teachers comments made it clear that, athough they could readily adopt the Metacourse in its
current nine lesson format, both the optimal integration into their normal curric" ilum, and the
infusion of key concepts throughout the term, remains a considerable challenge. Students
still often exhibit an inert, rather than active knowledge of the programming enterprise. This
"fragile" knowledge does not permit optimal use in contexts when it should be applied, even
within the discipline of programming let alone in other problem solving realms. The

programming research group at ETC is currently developing a revision of the Metacourse to
address some of these concems.

This revision is built upon a "module" rather than a "lesson" model. Thus, rather than
a collection of fully worked out lessons, complete with technical terms , examples and
exercises, which some teachers found constraining, a small number of short modules are
presented. These introduce the key Metacourse concepts, and focus explicitly on how such
concepts can be practiced or "infused" throughout the semester while permitting
considerable freedom for the teacher to retain his or her own vocabulary , favorite exercises
and organization. Finally a number of optional modules attempt to illustrate how bridges can
be made to academic and "real life" problems, thus encouraging transfer to more general
cognitive skills. While providing teachers more freedom to utilize the Metacourse in their own
fashion, it is designed to make more explicit and hopefully available to both teachers and
students the core elements of our approach and the rationale behind them. Such aids as an
"animated computer world" with an agent performing simple operations on information,
icons, metaphors, and posters are all being considered as metacognitive supports. Tills

second generation language model Metacourse will be empirically tested in the near future.

The results of two studies on the Metacoursse for BASIC lend encouragement to
the employment of the "Metacourse" format as a viable model fur effective educational

i 0

Programming 35

interventions in courses in other programming languages, or for that matter, other academic
subjects. Improved student competence in a variety of such areas might be more easily

achieved through ",Aetaccurse" interventions consisting of visual models of a few key
concepts, strategies, and metacognitive aids interspersed throughout a norm. , semester
subject matter course. As mentioned previously this modest curriculum intervention is short

enough to be accepted by most teachers and incorporated into their normal courses, while

being substantial enough to infuse key concepts and habits throughout the course thus
substantially enhancing learning.

What has become more apparent as we have interacted with teachers is that many of them
share a goal of teaching their students in some sense "what computers and programming
languages are really all about", "how they can be used as problem-solving tools" and not just the
syntax of a particular programming language like BASIC. It may be the case that the achievement
of this goal through the design of a second generation metacourse is also more compatible with

the development of general cognitive skills, and that a powerful pedagogy of programming
focusing on attention to mental models, strategies, etc. may lead to more success at achieving
both programming competence and transfer.

Programming 37

References

Beveridge, M. & Parkins, E. (1987). Visual representation in analogical problem solving.
Memory and Cognition, 11, 230-237.

Boner, J. & Soloway, E. (1985). pre-Programming knowledge: A major source of
misconceptions in novice programmers. Pittsburgh, PA: Learning Reserach and

Development Center. (ERIC Document Reproduction Service No. ED 258 805.)

Clement, J., Lochhead, J., & Monk, G. (1981). Translation difficulties in learning
mathematics. American Mathematical Monthly, Eta, 26-40.

Clements, D.H. (1985, April). Effects of Logo programming on cognition. metacognitive
skills. and achievement. Presentation at the American Educational Research

Association conference, Chicago, Illinois.

Clements, D.H., & Gullo, D.F. (1984). Effects of computer programming on young
children's cognition. Journal of Educational Pyscholoay, zses), 1051-1058.

DuBoulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1), 57-73.

DuBoulay, B., O'Shea, T., & Monk, J. (1981). The black box inside the glass box:
Presenting computing concepts to novices. International Journal of Man-Machine
Studies, j4, 237-249.

Dweck, C.S., & Ucht, B.G. (1980). Learned helplessness and intellectual achievement.
In J. Garber & M. Seligman (Eds.), Human Helplessness. New York: Academic

Press.

Ehrlich, K., Soloway, E., & Abbot, V. (-)82). Transfer effects fmm programming to
algebra word problems: A preliminary study (Report no. 257). New Haven: Yale

University Department of Computer Science.

Gentner, D., & Stevens, A.L. (Eds.). (1983). Mental fu',1dels. Hillsdale, New Jersey:

Lawrence Eribaun Associates.

Johnson-Laird, P.N. (1983). Mental Models. Cambridge, Massachusetts: Harvard

University Press.

Joni, S.A., & Soloway, E. (1986). But my program runsl: Discourse rules for novice
programmers. Journal of Educational Computing Research, 2(1), 95-125.

,4 2

38 Programming

Kurland, D.M., Clement, C., Mawby, R., & Pea, R.D. (1987). Mapping the cognitive
demands of learning to program. In D. N. Perkins, J.Lochhead, & J. Bishop (Eds.),
Thinking: The second international conference (pp. 333-358). Hillsdale, New
Jersey: Erlbaum.

r

Kurland, D.M., Pea, R.D., Clement, C., & Mawby, R. (1986). A study of tt_ development
of programming ability and thinking skills in high school students. New York: Bank 1

Street College of Education, Center for Children and Technology. Also, Journal gi
Educational ComputinTResearch, in press.

Linn, M. C. (1985). The cognitive consequences of programming instruction in
classrooms. Educationa! Researcher, 14, 14-29.

Mawby, R. (1987). Proficiency conditions for the development of thinking skills through
programming. In D. N. Perkins, J. Lochhead, & J. Bishop (Eds.), Thinking: The
second international conference (pp. 359-371). Hillsdale, New Jersey: Eribaum.

Mayer, R.E. (1976). Some conditions of meaningful learning for computer programming:
Advance organizers and subject control of frame order. Journal of Educational
Psychology, st 143-150.

Mayer, R.E. (1981). The psychology of how novices learn computer programming.
rionigultgagueys, 1,1(11), 121-141.

Mayer, R.E. (1985). Learning in complex domains: A cognitive analysis of computer
programming. The Psychology of Learning and Motivation, 19, 89-130.

Pea, R.D. (1986). Language-independent conceptual "bugs" in novice programming.
Journal of Educational Computing Research, 2(1), 25-36.

Pea, R. D., & Kurland, D.M. (1984a). On the cognitive effects of learning computer
programming. New Ideas in Psychology, 2(2), 137-168.

Pea, R.D., sk Kurland, D.M. (1984b). Logo programming and the development of planning
gills (Report no. 16). New York: Bank Street College.

Perkins, D.N. (1986a). Knowledge as Design. Hillsdale: new Jersey: Lawrence Eribaum
Associates.

Perkins, D.N. (1986b). Knowledge as design: Teaching thinking through content. In J.
B. Baron & R. S. Stemberg (Eds.), laacIiingiNanzekills: Theory and practice
(pp. 62-85). New York: W. H. Freeman.

.1 3

Programming 39

Perkins, D.N., Farady, M., Hancock, C., Hobbs, R., Simmons, R., Tuck, T., & Villa, E.
(1986). Nontrivial pursuit: The hidden complexity of elementary Logo

programming (Tech. Report no. 86-7). Cambridge, Massachusetts: Harvard

Graduate School of Education, Educational Technology Center.

Perkin;:, D.N., & Martin, F. (1986). Fragila knowledge and neglected strategies in novice
programmers. In E. Soloway & S. lyengar (Eds.), Empirical studies of programmers

(pp. 213-229). Norwood, New Jersey: Ablex.

Perkins, D.N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of
leaming in novice programmers. Journal of Educational Computing Research,

2(1), 37-56.

Perkins, D.N., Martin F., & Faraday, M. (1986). Loci of difficulty in learning to program

(Tech. Report no. 86-6). Cambridge, Massachusetts: Harvard Graduate School of

Education, Educational Technology Center.

Perkins, D.N., Schwartz, S., & Simmons, R (in press). Instructional strategies for the
problems of novice programmers. In Mayer, R. (Ed.), Teaching and learning
computer programming: klultipie rawrch perspectives. Hillsdale, New Jersey:

Lawrence Erlbaum Associates.

Salomon, G., & Perkins, D.N. (in press). Transfer of cognitive skills from programming:
When and how? IgurnapiklucatignaLcampulinageosusb,

Seeman, D., Putnam, R., Baxter, J., & Kuspa, L. (1986). Pascal and high school
students: A study of errors. Journal of Educational Computing Research, 2(1), 5-

23.

Solver:4, E. 3. Ehrlich, K. 1984). Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, SE-1Q(5), 595-609.

Soloway, E., Lochhead, J., & Clement, J. (1982). Does computer programming enhance
problem solving ability? Some positive evidence on algebra word problems. In R.
Seidel, R. Anderson, & B. Hunter (Eds.), Computer literacy. New York: Academic

Press.

Zeiman, fs. (1985, April,. Individual gfif esacthewmar learning environment:
Wtivationai constraints to learning LOGO, Presented at the Ari16:.:.an Educational

Research Association Annual Meeting, Chicago, Illinois.

Appendix A

Paper Computer World

Worksheet 52
Pail 2 DIRECTIONS: (A), Circle and label the counting pattern. Name:

(B) Hand-execute the program. (C) Change the final print
statement so that it explains the output in more explicit terms.

Program Area

10 PRINT "HOW MANY PEOPLE?"
20 INPUT P
30 G . 0
40 PRINT "PLEASE ENTER THE NUMBER OF"
50 PRINT "SLICES OF PIZZA THAT"
60 PRINT "EACH PERSON WANTS"
70 FOR I =1 TO P
80 INPUT N
90 IF N > 3 THEN G= G + 1

100 NEAT I
110 PRINT "THE ANSWER IS" ; G

Variables Area

.16

13001:111:11:11:11:11:1313:101:11:11:101:100001:101312:1731:1
01:11:1013001:1130001:1001:11XEDITIONEECIC

(101:11:11:11:11:101100001XICOCEICENECUXICIIMEI

User Input Area:

4
2
1

5
4

.17

Appendix B

Example of Purpose, Action, and Syntax
from Mini-Manual

III. L E T

PURPOSE: You use LET in a program to make the computer save information in
its memory for later use. The information is stored in a variable. Think
of a variable as a box with name. Boxes with names ending in $ hold only
strings. Boxes without the S hold only numbers.

SYNTAX ACTION

LET Variable Name = Number

for examole:
LET X = 5

Is it really there?
PRINT X

SCREEN DISPLAY WON(SPACE

5

LET Variable Name = Lepal Numerical Expression

fo- example:
LET Z = 5 * (1 + X)

Is it really there?
PRINT Z

LET Z = Z -2

Is it really there?
PRINT Z

:30

5 is stored In the X Pox

1 + 5 is 6
5 * 6 gets you to 30
30 is stored in the Z box

30 2 = 28
28 is the new value for Z.
which irs stored in the Z box

LET Strino Variable Name = Strinc
for example:
LET AS = "SIZE"

LET B$ = "I"

Are they really there?
PRINT As

PRINT B$

SIZE

Note: You can leave off the LET statement,
for example:
X =2

'S Is "DAYS"

SIZE is stored in the AS
bo,t.

/ is stored in the B$ box.

and get the same result.

2 is stored in the X box.

1

DAYS is stored in the
D$ box

Example of a "Pattern" from
the Mini-Manual

PATTERNS

Summing Pattern

Purpose: To find the sum of a series of numbers

Structure: Example:
10 REM ADDS 5 NUMBERS

EiT T - 0 20 LET T = 0
...

<begin loop> 30 FOR I = 1 TO 5
40 PRINT "ENTER A NUMBER"
50 INPUT N

LET T = T + <number to add> 60 LETT=T+N

<end loop> 70 NEXT I

Action: The summing variable (in this case, T) is first set to 0. Each time
the loop body is executed, another number is added to the summing variable.
When the loop is exited, the summing variable contains the total..

Counting. Pattern

Purpose: To count the number of times something is true

Structure: Example:
10 REM COUNTS A'S

LETC=0 20LETC=0.
<begin loop> 30 FOR I = 1 TO 5

... 40 PRINT "ENTER A GRADE"
50 INPUT 0$

IF <condition> THEN LET C = C + 1 60 IF0S="A"THENLETC=C+ 1

<end loop> 70 NEXT I

Action: The counting variable (in this case, C) is first set to 0. Each time
the loop body is executed, you test a condition. If that condition is true, the
counting variable is increased by 1.

i

v.

A

Appendix D

Cognitive Skills Pre-/Post-Test

Version A

Name: Date:

GENERAL INSTRUCTIONS

Our class has been chosen to contribute to some very important educational

research. A group of people at Harvard University is attempting to discover
the best techniques of teaching BASIC programming so that it will be more

interesting and understandable to students.

This posttest, given now at the end of the course, will help them to

determine the differences among all of you who will be participating.

The Harvard Group wants you to know how much they appreciate your help and

they are looking forward to your comments and the wonderful information

they will gather through your efforts.

This is a 40minute test comprised of a short questionnaire and a number

of problems.

Do not start the test until your teacher says "go".

You may work through the test as quickly as you want. After finishing one

part, go on to the next.

However, we want to be sure you try all parts. So after the time for a

particular section is up, the teacher will say, "please go ahead to section
A, B, C, D, E, or F (whatever it is) now if you haven't already".

You can go back to work on a previous section if you have extra time.

Ask any questions you have now.

4

I

A. CHOOSE ONE ANSWER 5 Minutes

Pick the answer that best describes what happens to you or how you feel.
There are no right or wrong answers.

1. When you read a story and can't remember much of it, is it usually
a. because the story wasn't well written, or
b. because you weren't interested in the story?

2. If a teacher says to you, "Your work is fine", is it
a. something teachers usually say to encourage pupils, or
b. because you did a good job?

3. Suppose you weren't sure about the answer to a question your teacher
asked you, but your answer turned out to be right. Is it likely to
happen

a. because she wasn't P particular as usual, or
b. because you gave the best answer you could think of?

4. When you read a story and rememter most of it, is it usually
a. because you were interested in the story, or
b. because the story was well written?

5. If the teacher didn't pass you to the next grade, would it probably be
a. because she "had it in for you", or
b. because your school wok wasn't good enough?

6. Suppose you don't do as well as usual in a subject at school. Would
this probably happen

a. because you aren't as careful as usual, or
b. because somebody bothered you and kept you from working?

7. If a boy or a girl tells you Lilt you are bright, is it usually
a. because you thought up a good idea, or
b. because they like you?

8. Suppose you became a famous teacher, scientist or doctor. Do you
think this would happen

a. because other people helped you when you needed it, or
b. because you worked hard.

9. Suppose you are showing a friend how to play a game and he has trouble
with it. Would that happen

a. because he wasn't able to understand how to play, or
b. because you couldn't explain it well?

10. If you can't work a puzzle, is it more likely to happen
a. because you are not especially good at working puzzles, or
b. because the instructions weren't written clearly enough?

P. DAYS OF TIE WEEK 6 Minutes

1. If the day before the day after tomorrow is Sunday, what is the day
before yesterday?

2. Suppose a meek had no Wednesday. If today is Tuesday, the day after
tomorrow is what?

3. Suppose today is the day before Tuesday. What is the day before yesterday?

A. If tomorrow were Wednesday instead of Sunday, yesterday would be Monday
instead of what?

C. VISUAL. PUZZLE 5 minutes

Now many triangles does the figure below contain?

$

D. FORMULA QUESTION A Minutes

For every 3 people who drink coffee, 1 person drinks tea. Suppose C
stands for the number of people who drink coffee. T stancs for the number
of people who drink tea. Circle the equation that states the relatilnshiP
between how many peLple drink coffee and how many people drink tea.

1 = C/T T 3C C = T/3- r. C 3T 3 = C

E. DESCRIPTION 8 Minutes

Examine carefully the pictures of the items shown in the following figure.

Write a description of Item "O" to someone, so that he/she Could pick out

"0" from all the other shapes. The other person's paper doesn't have the

letters beside to identify each figure, and the figures are all mixed up.

Write out your descriptions of "WI below.

A.

D.

C.

J.

sRmalm.usumussmoustamsswRou
CL©i o

0

0

3.

Z.

o id 0
O O b
O 0

x.
0 0 0 0
00 0 0

C.

p.

I.

L.

O 0 0

o I 10 0 0 0

F. REPEATS AND DECIDES 10 Minutes

For the next problem, you have to learn about repeats and decides before
you do the problems.

REPEAT: A repeat is an instruction to do something over and over again,
until some condition is met. For instance:

REPEAT Jump up and down until you've done it 17 times.

DECIDE: A decide is an instruction to choose which one, of two or more
conditions exist, and then doing something once, based on this choice.
For instance:

DECIDE Decide if you have homework. If you do, stay home and
do it. If you don't, then go see a friand.

WRITING DIRECTIONS USING REPEATS AND DECIDES: You can write directions
using repeats and decides. Here is on example that uses one repeat and
one decide instruction.

Suppose you want to add up all the money in everybody's pocket in the room
and shout "Hurrah!" if the total is over $100.
Here are the directions:

REPEAT Add on the money in the next person's pocket until you
have covered all the people in the room.

DECIDE Decico if you have more than $100. If you do, shout,
"Hurrah!". If you don't, then be quiet.

Other problems may require more than one repeat and/or decide.

Now go to the next page for the problem.

It's Saturday and you wont to go clt and r-,e the movie called: "The Crazy
Computer". You have a newspaper that lists the movie theaters alphabetically
with what is playing at each. If you can't find the movie anywhere then
turn on the T.V. to a ball game. If you find the movie then start calling
your friends until one says he or she will go with you. If you find one
willing to go, then make a date and go. If not stay home and watch the
ball game.

If you have extra time, go back and complete sections you did not finish
or check your work.

-

"..

,
V

Appendix E

BASIC Test

1 ti D

NAME DATE

DIRECTIONS -- Work quickly but carefully on the following problems. If
.

you get stuck on one problem, go on to the next.

Write the Basic commands that will cause the following to happen.
An example is done for you below.

EXAMPLE. The following ',ord appears on the screen:

Hello

PRINT " Hello°

1. The following message is to be printed on the screen:

The answer is cat

2. The number 5 is to appear on the screen.

3. The program asks the user for a number. (The number will be stored in
a variable.)

4. The variable X is set to the value 2.

5. The variable X is set to 3 more than Y.

. 6. A variable (give it whatever name you like) is set to the following:

THE ANSWER IS KNIGHT

7. When the value of Z is greater than 3, the following message is
printed: L = 5

Complete the next 2 programs by filling in the blanks with the appropriate
code.

8. This program uses a FOR statement to print the number 6 ten times.
(Fill in the blanks.)

10 FOR X = 1 TO
20 PRINT
30

9. The following is part of a larger program. What is needed in this
part of the program so that lines 220-230 are not executed? (Fill in the
blank.)

210
220 Print "No"
230 Print "No"
240 Print "Yes"

10. During a run of the following program what will appear on the screen? .

Suppose the user enters 16 for A.

10 PRINT "HOW OLD ARE YOU?"
20 INPUT A
30 IF A=15 THEN PRINT "TOO OLD"
40 IF A)15 THEN GOTO 60
50 IF A<1..., THEN PRINT "LITTLE KID"

60 PRINT "RETIRE FROM SCHOOL"
70 END

screen display

=1.1

11. During a run of the above'program what will appear on the screen?
Suppose the user enters 14 for A.

screen display

12. This program asks the user to enter the i.umber of slices of bread
he/she has eaten and then shows on the screen the total number of calories
the bread contains. In this program S stands for number of slices of
brad, and C stands for calories. (Assume there are 70 calories in a slice
of bread.)

The program doesn't work. The output is not correct; it is always:

Number of slices
Total calories in bread
0

What is wrong with the program? Find the error(s) and correct the program.

100 PRINT "Number of slices"

110 LET C = * 70

120 PRINT "Total Calories in bread"

130 PRINT C

140 END

13. The following program was written to calculate weekly pay by multiplying
hours worked times hourly wage. P stands for pay, H for hours, and W for
wage. The user of this program types in 10 for hours and 4 for wage.
During the run what will r screen display show?

10 LET P = h * W

20 INPUT "HOURS "; H

30 INPUT "WAGE "; W

40 PRINT "PAY = "; P

50 END

3

screen display

You will be writing 2 programs that do the same thing; they print out on
the screen the whole numbers from 1 to 10. The output will look like this:

1

2

3

4

5

6

7

8

9

10

In your first program, use a FOR/NEXT loop. In your second program create
the loop using an IF statement.

14. PROGRAM WITH FOR/NEXT LOOP 15. PROGRAM WITH IF STATEMENT

4

G3

16. Each day, a grade school class of 20 students counts the number of
cartons of milk needed by the class. Write a program that will: 1) for
each of the 20 students ask how many cartons of milk he or she will drink,
and 2) calculate the total number of cartons needed by the class and print
the total on the screen.

5

Appendix F

Classroom Observation Sheet

G5

OBSERVATION INSTRUMENT

Observer: Date:

School:

Teacher:
Beginning time: ending time:

total class time:

control:
experimental: metacourse lesson #

ordinary class

taped? yes no

1. Write out an outline of the class as things happen. Try to note the

essential features such as major points made, method of presentation,

practice time, etc. Revise after class if necessary.

2

Instruction: Pease describe the behaviours indicated below on a 7 point
scale. For most examples, there are definitions and reference points
given. Feel free to assign ratings between the reference points, but use
whole numbers only (no fractions or decimal points). If a question is
unanswerable or somehow not applicable, please mark an "x" in the space.
(Where fitting, a brief explanation would be appreciated).

2. Amount of interaction between teacher and students

7 lots of interaction between students and teacher
4 average amount of interaction
1 little interaction

3. Amount of broadly beneficial interaction among students
7 much
4 some; a few comments between students
1 none

4. Amount of deleterious interaction among students

7 much
4 some; the usual amount of fooling around
1 none

5. Student responsiieness

7 students respond readily
4 students need to be coaxed
1 students are unwilling to participate, to answer or to

ask questions, etc.

6. Attentiveness of students

7 highly attentive to material/instruction
4 somewhat attentive, but also talking, etc
1 inattentive -- talking, doing other work

7. Percentage of students who seem to be engaged in class activities

i) S

3

8. Teacher student interaction (Give percentages)

a. Process oriented
b. Product oriented
c. Disciplinary

Teacher's role Students' role

9. Preparedness of students

7 students seem very well prepared and ready to move on

4 students seem adequately prepared
1 students seem to lack understanding requisite to

continuing

10. Write in the approximate percentages of the total time
spent in:

lecture
questions and discussion
demonstration
hand execution exercise
other exercises

(total should be 100%)

lecture teacher speaks

demonstration teacher demonstrates some aspect of programming
either on board or with overhead

handexecution students/teacher go over program line by line

other exercises-

11. Teachermaterial interface
7 teacher seems very comfortable and conversant with

material
4 teacher seems adequately comfortable with material

1 teacher seems uncomfortable with material

12. Mode of instruction
Give percentages.

highly interactive; teacher often asks for comments,

talks to and with students
combination of interactive and presentational
presentational; teacher describes, demonstrates,

modRls

4

13. Subjective, .(.;listic rating of total effectiveness of

instruction

13a. Comm-..nt

14. Reference to other lessons

7 / much reference to earlier lesson(s)
4 some mention of earlier lIssons(s)

1 no mention of earlier lesson(s)

14a. If ideas from earlier lesson(s) were referred to, note whiLn

15. Check: (use 1 for "yes" or 2 for "no") Were there any bridges or
applications stressed for which Basic Programing principles are used in:
a. other academic disciplines; which one(s):

b. woblems in real life, outside school; whict one(s):

How? Please note:

For experimental lesson classes only
Score using the following scale:

7: vided use, using it a lot
4: a propri'te, right on target
1: no mention

16. Which basic principles from the Metacourse were referrec to:
1 the paper computer
b. purpose, syntax, action
c. interaction between the user and the computer

d. the minimanual
e. patterns
f. program production using metacourse principles
g. other:

17. rcentage of the important material in this lesson
that was adequately covered.

Fidelity of lesson observed to lesson as written
7: taught almost exactly as written
4: the same or very similar content of lesson as written, but adapted
and paraphrase,!
1! almost unrecognizable as the same lesson

18. Introduction
19. Lecture
20. Participation
21. explanation
22. Exercise

Appendix G

Student Questionaire

Previous Comoutina Experience NAME

Please answer the following questions concerning your experience with

computers. If you have a hard time answering any of these questions just

give it your best guess. The information will help us in our research,

and we appreciate your help with this project.

1) Have you ever taken a BASIC programming course before this semester?

Yes No

2) If you answered yes to number 1: When did you take the course(es), how

long did the course(s) last and how often did the class(es) meet? (For

example, you -4-It have had a BASIC course at a camp this past summer that

lasted for 6 weeks and met 3 times a week for 2 hours each class.)

3) Have you ever taken another programming course in a language other than

BASIC?

Yes No

4) If you answered yes to question 2: What language(s) have you studied?

Logo If yes, how much?

Pascal If yes, how much?

Other (name of language) If yes, how much?

5) In what grade were you first introduced to computer languages (Logo,

Basic, etc)?

6) In what grade were you first introduced to computer aoplications(word-

processing data bases, spreadsheets)?

7) Is there a computer in your home? If so, I) what kind is it, 2) how often

do you use it, and 3) what 2 things do you use it for the most (for example,

games, programming, wordprocessing)?

